R语言入门
Department of Psychology, College of Teacher Education, Ningxia University
Official version
Developing version
x <- c("grade1", "grade2", "grade3")
x
## [1] "grade1" "grade2" "grade3"
x <- factor(x)
x
## [1] grade1 grade2 grade3
## Levels: grade1 grade2 grade3
levels(x)
## [1] "grade1" "grade2" "grade3"
labels(x)
## [1] "1" "2" "3"
as.numeric(x)
## [1] 1 2 3
x <- ordered(x)
x
## [1] grade1 grade2 grade3
## Levels: grade1 < grade2 < grade3
c()
combines its arguments to form a vector.#
Comment:
Generate regular sequences (interaction);
Separate multiple command in one line,<-
Assign$
, []
,[[]]
subset, extractSee below.
-
Negative numbersid <- 1:10 + 100; gender <- rep(0:1, 5); depression <- sample.int(4, 10, TRUE)
(dat_list <- list(id = id, gender, depression))
## $id
## [1] 101 102 103 104 105 106 107 108 109 110
##
## [[2]]
## [1] 0 1 0 1 0 1 0 1 0 1
##
## [[3]]
## [1] 1 1 2 4 3 3 3 1 4 2
dat_list$id
## [1] 101 102 103 104 105 106 107 108 109 110
dat_list[2]
## [[1]]
## [1] 0 1 0 1 0 1 0 1 0 1
dat_list[[2]]
## [1] 0 1 0 1 0 1 0 1 0 1
dat_data.frame <- data.frame(id, gender, depression)
head(dat_data.frame)
## id gender depression
## 1 101 0 1
## 2 102 1 1
## 3 103 0 2
## 4 104 1 4
## 5 105 0 3
## 6 106 1 3
str(dat_data.frame)
## 'data.frame': 10 obs. of 3 variables:
## $ id : num 101 102 103 104 105 106 107 108 109 110
## $ gender : int 0 1 0 1 0 1 0 1 0 1
## $ depression: int 1 1 2 4 3 3 3 1 4 2
View the whole data set:
rownames(dat_data.frame)
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
colnames(dat_data.frame)
## [1] "id" "gender" "depression"
(colnames(dat_data.frame) <- c("id", "x", "y"))
## [1] "id" "x" "y"
colnames(dat_data.frame)[2] <- "gender"
colnames(dat_data.frame)[3] <- "depression"
colnames(dat_data.frame)
## [1] "id" "gender" "depression"
dat_data.frame[2,]
## id gender depression
## 2 102 1 1
dat_data.frame[2,2]
## [1] 1
dat_data.frame[1:3,c(1,3)]
## id depression
## 1 101 1
## 2 102 1
## 3 103 2
dat_data.frame[1, "depression"];dat_data.frame["1", "depression"]
## [1] 1
## [1] 1
dat_data.frame[c(2,4), "depression"];dat_data.frame[c("2","4"), "depression"]
## [1] 1 4
## [1] 1 4
dat_byrow <- c(101, 1, 2, 102, 0, 5, 103, 1, 4, 104, 1, 1, 105, 0, 3,
106, 0, 5, 107, 0, 2, 108, 1, 4, 109, 0, 2, 110, 1, 2)
mat <- matrix(dat_byrow, byrow = TRUE, nrow = 10,
dimnames = list(0:9, c("id", "gender", "depression")))
mat
## id gender depression
## 0 101 1 2
## 1 102 0 5
## 2 103 1 4
## 3 104 1 1
## 4 105 0 3
## 5 106 0 5
## 6 107 0 2
## 7 108 1 4
## 8 109 0 2
## 9 110 1 2
getwd()
gets the current working directory, setwd()
sets the working directory.getwd()
or RStudio to get and go to R’s working directory.qingyaozhang2024040
).qingyaozhang2024040
file folder.setwd()
or RStudio to set the new folder qingyaozhang2024040
as your working directory..csv
Data
.csv
file.read.csv()
.read .csv file from R’s working directory:
read .csv file from a directory other than R’s working directory, e.g.,
write.csv()
.Example:
readxl
package, read_excel()
, read_xls()
, read_xlsx()
haven
package, read_spss()
, read_sav()
, write_sav()
haven
package, read_stata()
, read_dta()
, write_dta()
install.packages(pkgs = c(
"afex", # 方差分析
"lavaan","blavaan","semTools","simsem", # 潜变量分析
"BUCSS","car", # 回归分析样本量计划
"effectsize", # 效应量
"emmeans", # 估计边缘平均数,事后比较
"tidyverse","haven","readxl", # 数据读取
"interactions", # 简单斜率分析
"jtools", # 回归分析的结果报告
"Keng", # 回归分析的效应量PRE
"lme4","lmerTest","nlme", # 混合效应模型
"lubridate", # 时间变量的处理
"metafor","metaSEM", # 元分析
"MASS", # Modern Applied Statistics with S
"MBESS", # 信度及其置信区间
"pwr", # 统计检验力
"SBSDiff", # 似然比检验
"jiebaR", # 文本挖掘
"jiebaRD", # 文本挖掘
"text2vec", # 文本挖掘
"tmcn", # 文本挖掘
"wordcloud2", # 文本挖掘
"htmlwidgets", # 文本挖掘
"rmarkdown", # R文档
"kableExtra" # R文档
))
ggplot2
package, https://ggplot2-book.org/lavaan
package, https://lavaan.ugent.be/psych
package, https://personality-project.org/r/psych/afex
package, https://afex.singmann.science/© 2025 Qingyao Zhang